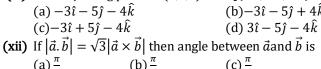
Sample Paper 2

Section A

(i)	If a set A has 3 elements and R be any relation in $A \times A$ then R has elements:			
	(a) 8	(b) 64	(c) 32	(d) 512
(ii)	Let $f: R \to R$ given by $f(x) = x^2$ then $f^{-1}(16) =$			
	(a) $\{-2,2\}$	(b) $\{-4,4\}$	(c) $\{-16,16\}$	(d) {0,4}
(iii)	The number of all possible matrices of order 3×3 with each entry 0 or 1 is			
	(a) 27	(b) 18	(c) 81	(d) 512
(iv)	Let A be square matrix of order 3 then $ 3A =$			
			(c) 9 A	
(v)	Find k if $f(x) = \begin{cases} kx^2, x \le 1 \\ 4, x > 1 \end{cases}$ is continuous at $x = 1$.			
(-)	(-)/			
	(a) 4	(b) $\frac{1}{4}$	(c) 1	(d) 2
(vi)	$\frac{d}{dx}(\tan(2x+3)) =$			
	(a) $\sec^2(2x+3)$ (b) $2\tan(2x+3)$			
(::)				
(VII)	The function $f(x) = x^2 - 2x$ is increasing in (a) $(-2, -1)$ (b) $(-1, 0)$ (c) $(0, 1)$			
			(c) (0,1)	(d) (1,2)
(viii)	$\int \sec x (\sec x + \tan x) dx$			
	(a) $\sec^2 x + \tan^2 x + c$		(b) $\sec x + \tan^2 x + c$	
	(c) $\sec^2 x + tanx + c$ (d) $\sec x + tanx + c$		+ c	
(ix)	Find a if $\int_0^a 4x^3$	dx = 16		
	(a) 3	(b) 2	(c) 4	(d) 1
(x)	Degree of differential equation $y''' + y^2 + e^{y'} = 0$ is			
	(a)3	(b) 1	(c) 2	(d) does not exist
(xi)	Vector joining points $P(2,3,0)$ and $Q(-1,-2,-4)$ is:			
	$(a) -3\hat{\imath} - 5\hat{\jmath} - 4\hat{k}$		$(b)-3\hat{\imath}-5\hat{\jmath}+4\hat{k}$	



(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$

(xiii) Find direction cosines of the
$$x$$
 – axis are:
(a) < 0,0,1 > (b) < 1,1,1 > (c) < 1,0,0 > (d) < 1,1,0 >

(a) < 0.0,1 >(xiv) Region represented by inequalities $x \ge 0, y \le 0$ is

(a) I quadrant (b) II quadrant (c) III quadrant (d) IV quadrant (xv) If P(A) = 0.8, P(B) = 0.5 and P(B/A) = 0.4 then $P(A \cap B) = 0.4$

(a)0.4(b) 0.32(d) 0.5

2. Fill in the blanks:

(i)
$$\cos^{-1}\left(-\frac{1}{2}\right) =$$

1. Select the correct answer:

(ii) If A is of 2×3 order and B is of 3×2 then order of (AB)'_____

(iii)
$$\int \frac{dx}{x \log x} =$$

(iv) The d.r. of line
$$\frac{4-x}{2} = \frac{y}{6} = \frac{1-z}{3}$$
 are _____

 $(d)\frac{\pi}{6}$

(v) If A and B are independent events, P(A) = a, P(B) = b then $P\left(\frac{A}{B}\right) = \underline{\hspace{1cm}}$

Section B

- 3. If $A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 2 & 6 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -2 \\ -4 & 5 \\ 5 & 3 \end{bmatrix}$ then find X such that 2A + 3X = 5B. 4. Find k if $f(x) = \begin{cases} \frac{k \cos x}{\pi 2x}, x \neq \frac{\pi}{2} \\ 3, x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$.
- The length x of rectangle is decreasing at the rate of 3 cm/min and width y is increasing at the rate of 2 cm/min when x = 10 and y = 6, find the rate of change of (a) the perimeter, (b) the area of rectangle. Or

Find the interval in which $f(x) = x^2 - 5x + 2$ is strictly decreasing.

- **6.** If $f'(x) = x \frac{3}{x^2}$, $f(1) = \frac{11}{2}$, find f(x). **or** Evaluate $\int_0^{\pi/2} \frac{\sin x \, dx}{1 + \cos^2 x}$
- 7. Find the area enclosed by $x^2 + y^2 = 4$.
- **8.** Solve $y \log y$. dx x. dy = 0
- **9.** Find the vectors and Cartesian equation of the line through the (5,2,-4) and parallel to vector $3\hat{i} + 2\hat{j} - 8\hat{k}$. OR Prove that Cauchy schwartz inequality: For any two vectors \vec{a} and $|\vec{b}, |\vec{a}.\vec{b}| \leq |\vec{a}| |\vec{b}|$

Section C

- **10.** Show that the relation R in **R** defined as $R = \{(a,b); a \le b\}$ is reflexive and transitive but not symmetric.
- **11.** If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, verify that $A^2 5A + 7I = 0$
- **12.** Differentiate $x^{\sin x} + (\sin x)^{\cos x}$. **or** Differentiate $\log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)$ w.r.t. x
- **13.** Evaluate $\int \frac{x+3}{\sqrt{5-4x-x^2}} dx$ **or** Evaluate $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\tan x}}$.
- **14.** Solve $x^2 dy = (2xy + y^2)dx$
- **15.** Maximize Z = 4x + y subject to the constraints: $x + y \le 50, 3x + y \le 90, x \ge 0, y \ge 0$
- **16.** A and B appeared for an interview. the probability of their selection is $\frac{1}{2}$ and $\frac{1}{6}$ respectively. Find the probability (i) both selected (ii) only one selected (iii) none selected. Or An urn contains 10 black and 5 white balls. Two balls are drawn from urn one after other without replacement, what is the probability that both balls are black.

- **17.** Solve 3x + 4y + 7z = 4; 2x y + 3z = -3; x + 2y 3z = 8 or Express $\begin{bmatrix} 2 & 1 & -1 \\ 3 & 2 & 1 \\ 1 & 2 & -1 \end{bmatrix}$ as sum of symmetric and skew-symmetric matrices.
- **18.** Show that the rectangle of maximum perimeter which can be inscribed in a circle of radius a is a square of side $\sqrt{2}a$. **Or** Show that a closed right circular cylinder of given total surface area and maximum volume is such that its height is equal to the diameter of its base.
- **19.** Find the equation of the line passing through (1,2,-4) and perpendicular to the lines $\frac{x-8}{2}$

$$\frac{y+9}{-16} = \frac{z-10}{7}$$
 and $\frac{x-5}{2} = \frac{y-2}{8} = \frac{z+5}{-5}$.