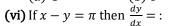
Sample Paper 4

Section A

1.	Select the	correct	answer	•
. .	DCICCE HIC	COLLCC	ansver	п

(i)	Let $f: R \longrightarrow R$ giv	en by f(x) = 3x	-4 then $f(x)$ is				
	(a) One-one	(b)onto (c) one	one and onto ((d) none			
(ii)	Let $A = \{1,2,3\}$ a	nd consider the r	relation $R = \{(1,1),$	(2,2),(3,3)	$,(1,2)$ } then R is		
	(a) Reflexive but	not symmetric	(b)reflexive but n	ot transitive	9		
	(c) symmetric ar	nd transitive	(d) neith	er symmetr	ic nor transitive		
(iii) If matrix A is both symmetric and skew symmetric then A is:							
	(a) diagonal mat	rix	(b) zero matrix				
	(c) identity matr	ix	(d) none				
(iv) Let A be non-singular matrix of order 3×3 , then $ Adj. A =$							
	(a) $ A ^3$	(b) A	(c) $ A ^2$		$ A ^2$		
(v) Find a if $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ a, & x = 3 \end{cases}$ is continuous at $x = 3$.							



(d) $\pi - 1$ (c) 1

(vii) The function $f(x) = x^2 e^{-x}$ is increasing in (a) $(-\infty, \infty)$ (b) (-2,0)(c) $(2,\infty)$ e-be(d) (0,2)educated

(c) 0

(d)9

(viii)
$$\int \sin 4x dx = (a)4\cos 4x + c(b) - 4\cos 4x + c(c) \frac{\cos 4x}{4} + c(d) \frac{-\cos 4x}{4} + c$$

(ix) $\int_0^1 \frac{dx}{\sqrt{1-x^2}}$

(x) The number of arbitrary constants in the general solution of a differential equation of order 4 are:

(a) 3 (b) 2(d)4

(xi) Find a unit vector in direction of $2\hat{\imath} + 3\hat{\jmath} - 6\hat{k}$

(a)
$$2\hat{i} + 3\hat{j} - 6\hat{k}$$
 (b) $\frac{2\hat{i} + 3\hat{j} - 6\hat{k}}{7}$ (c) $-2\hat{i} - 3\hat{j} + 6\hat{k}$ (d) $\frac{2\hat{i} - 3\hat{j} + 6\hat{k}}{7}$

(xii) Find angle between
$$\hat{i} - 2\hat{j} + 3\hat{k}$$
 and $3\hat{i} - 2\hat{j} + \hat{k}$:
(a) $\cos^{-1}\frac{5}{7}$ (b) $\cos^{-1}\frac{7}{5}$ (c) $\cos^{-1}\frac{10}{7}$ (d) $\cos^{-1}\frac{5}{14}$

(xiii) The point which lies on the line $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+1}{4}$ is:

(a)
$$(-1,2,-1)$$
 (b) $(1,-2,1)$ (c) $(1,2,1)$ (d) $(-1,-2,1)$
The point which lies in half plane of $3x - y \ge 3$ is

(a) (0,0) (b) (2,0) (c)(1,2)(d)(0,1)

(xv) If
$$P(A) = a$$
 and $P(B) = b$ are mutually exclusive events then $P(A \cap B) = (a)0$ (b) ab (c) $a + b$ (d) $a - b$

2. Fill in the blanks:

(i)
$$\sin(\cos^{-1}x + \sin^{-1}x) =$$

(ii) If
$$A = [a_{ij}]_{m \times n}$$
 is a square matrix if_____

(iii)
$$\int_{-2}^{2} (\sin x + x^3) dx =$$

- (iv) The d.r. of the line $\frac{2x+1}{4} = \frac{2-y}{3} = \frac{3z+5}{9}$ are _____
- If P(A) = 0.8, P(B) = 0.5, $P(A \cap B) = 0.4$ then P(AUB) =

Section B

- **3.** Find x and y if $2\begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$.
- **4.** Differentiate $\tan^{-1}\left(\frac{2+3x}{3-2x}\right)$ w.r.t x
- **5.** Find the point on the curve $y^2 = 8x$ for which the abscissa and ordinate change at the same rate. Or Find the interval in $f(x) = x^2 + 9x - 16$ is strictly increasing or decreasing.
- **6.** Evaluate $\int \frac{\cos 2x}{(\cos x + \sin x)^2} dx$ or Evaluate $\int_0^1 \frac{e^x dx}{1 + e^{2x}}$
- **7.** Find the area enclosed by $y^2 = 4x$, x = 1 and x = 2 and in first quadrant.
- **8.** Solve $(1 + e^{2x}) \cdot dy + (1 + y^2) \cdot e^x \cdot dx = 0$
- **9.** Find *p* so that the lines $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-2}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles. Or Find the scalar projection of $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$ on $\vec{b} = \hat{\imath} + 2\hat{\imath} + \hat{k}$.

Section C

- **10.** Prove that $\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} \frac{1}{2}\cos^{-1}x$.
- 11.If $A = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}$, verify (AB)' = B'A'.

If
$$x^y = e^{x-y}$$
, prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$

- 12.If $y = e^{a\cos^{-1}x}$ then show that $(1 x^2)y_2 xy_1 a^2y = 0$. Or

 If $x^y = e^{x-y}$, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$ 13. Evaluate $\int_0^1 \frac{(3\sin x 2)\cos x}{5 \cos^2 x 4\sin x} dx$ or Evaluate $\int_0^1 \frac{\log (1+x)}{1+x^2} dx$.
- **14.**Solve $x \cdot \frac{dy}{dx} y 2x^3 = 0$
- **15.** Minimize Z = 3x + 5y subject to the constraints: $x + 3y \ge 3$, $x + y \ge 2$, $x, y \ge 0$.
- 16. There are two bags, First bag contains 4 white and 3 red balls, 2nd bag contains 6 white and 5 red balls. One ball is drawn at random from one of the bags and found to be red. Find the probability that it is drawn from 2nd bag. OR A and B appeared for an interview. the probability of their selection is $\frac{1}{3}$ and $\frac{1}{6}$ respectively. Find the probability (i) both selected (ii) only one selected (iii) none selected.

Section D

- 17. Solve the following by Matrix Method: $\frac{4}{x} \frac{3}{y} + \frac{10}{z} = 2$; $\frac{8}{x} + \frac{6}{y} + \frac{5}{z} = 5$; $\frac{-12}{x} + \frac{3}{y} + \frac{15}{z} = 1$
 - **OR** If $A = \begin{bmatrix} 3 & -3 & 4 \\ 0 & -3 & 4 \\ 0 & 1 & 1 \end{bmatrix}$, show that $A^4 = I$. Hence find A^{-1} .
- 18. Show that a closed right circular cylinder of given total surface area and maximum volume is Find two positive numbers such that its height is equal to the diameter of its base. **Or** whose sum is 15 and the sum of whose squares is minimum
- **19.** Show that the lines $\vec{r} = 3\hat{i} + 2\hat{j} 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})$ and $\vec{r} = 5\hat{i} 2\hat{j} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k})$ are intersecting. Also find point of intersection.