Sample Paper 5

Section A

(i)	Let $n(A)$	= p then	number	of relations in	$A \times A$ are
-----	------------	----------	--------	-----------------	------------------

(a)
$$2^{2p}$$

(b)
$$2^{p^2}$$

(c)
$$p^2$$

(d)
$$2^{p}$$

(ii) Let
$$f: R \to R$$
 given by $f(x) = \frac{3x+1}{2}$ then $f(x)$ is

(iii) If
$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$
 then $x =$

(b)
$$\pm 6$$

$$(c) -6$$

(iv) If A is a $(x + 2) \times (y - 3)$ matrix and B is a 2×5 matrix and AB is a 3×5 then x and y.

(v)
$$\lim_{x\to 0} \frac{2^{3x}-1}{x} =$$

(vi)
$$\frac{d}{dx}\cos^{-1}(\sin x) = :$$

(a)
$$-1$$

(c)
$$\frac{1}{\sqrt{1-x^2}}$$
 (d) $-\cos^{-1}x$

$$(d) - \cos^{-1}x$$

(vii) The function $f(x) = \sin 2x + 6$ is decreasing in

(a)
$$(0,\pi)$$

(b)
$$\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$
 (c) $\left(0, \frac{\pi}{4}\right)$ (d) $\left(\pi, \frac{5\pi}{4}\right)$

(c)
$$\left(0, \frac{\pi}{4}\right)$$

(d)
$$\left(\pi, \frac{5\pi}{4}\right)$$

(viii)

(a)
$$\sec^2 x + c$$
(b) $\log|\cos x| + c$

$$\int \tan x dx = \frac{\text{come-become-educa}}{\text{(a) } \sec^2 x + c(b) } \log|\cos x| + c \quad \text{(c) } \log|\sec x| + c \quad \text{(d) } \log|\sin x| + c$$

(ix)
$$\int_0^1 \frac{dx}{1+x^2}$$

(b)
$$\frac{\pi}{4}$$
 (c) $\frac{\pi}{2}$

$$(c)^{\frac{\pi}{2}}$$

(d)
$$\frac{\pi}{2}$$

(x) The number of arbitrary constants in particular solution of a diff. equation of order 3 are: (c)1 (d) 0

(xi) Find a if the vectors $\vec{x} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$ and $\vec{y} = a\hat{\imath} + 6\hat{\jmath} - 8\hat{k}$ are collinear?

(b)
$$-4$$
 (c) 2

$$(c)$$
 2

$$(d) - 2$$

(xii) If θ is the angle between \vec{a} and \vec{b} and $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ then $\theta =$

(b)
$$\frac{\pi}{4}$$

$$(c)^{\frac{\pi}{2}}$$

(d)
$$\frac{\pi}{6}$$

(xiii) Any point lie on the line $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+3}{3}$ is:

$$(a)(1,-2,3)$$

$$(b)(-1,2,3)$$

(c)
$$(-1,2,-3)$$
 (d) $(1,-2,-3)$

(d)
$$(1, -2, -3)$$

The point which lies in half plane of $x - y \ge 0$ is (xiv)

(xv) If
$$P(A) = \frac{6}{11}$$
, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$, find $P(A/B)$:

$$(a)^{\frac{2}{3}}$$

(b)
$$\frac{5}{6}$$

(a)
$$\frac{2}{3}$$
 (b) $\frac{5}{6}$ (c) $\frac{4}{5}$

(d)
$$\frac{3}{5}$$

2. Fill in the blanks:

(i)
$$\cos(\sin^{-1}x) =$$

(i)
$$\cos(\sin^{-1}x) =$$

(i)
$$\cos(\sin^{-1} x) =$$

(ii) If $\begin{bmatrix} x + 2y & 3y \\ 4x & 2 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 8 & 2 \end{bmatrix}$ then value of $x + y =$ _____

- (iv) If lines $\frac{x-1}{2} = \frac{y+3}{5} = \frac{z-1}{a}$ and $\frac{x+2}{3} = \frac{y-2}{2} = \frac{z+5}{4}$ are perpendicular then a =_____
- (v) If A and B are mutually exclusive events, P(A) = a, P(B) = b then $P(A \cap B) =$

Section B

- Find AB if $A = \begin{bmatrix} 6 & 9 \\ 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 6 & 0 \\ 7 & 9 & 8 \end{bmatrix}$. Find k if $f(x) = \begin{cases} \frac{k \cos x}{\pi 2x}, & x \neq \frac{\pi}{2} \\ 3, & x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$.
- 5. Find the interval in which the function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is strictly increasing or decreasing. **Or** An edge of a variable cube is increasing at the rate of 3 cm/sec. How fast is the volume of the cube increasing when edge is 10 cm long?
- Evaluate $\int \sin 3x \cdot \cos 4x \ dx$ **OR** Evaluate $\int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} \ dx$
- Find the area enclosed by $y^2 = 4x$, x = 2 and x = 5 and above x axis.. 7.
- Solve $(1 + y^2)(1 + \log x) \cdot dx + x \cdot dy = 0$
- Find the area of parallelogram whose adjacent sides are $3\hat{i} + \hat{j} + 4\hat{k}$ and $\hat{i} \hat{j} + \hat{k}$. or Find the equation of a line passing through (2, -3,4) and parallel to line $\vec{r} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k} + 4\hat{k}$ $\lambda(\hat{\imath}-\hat{\jmath}+2\hat{k})$

- Section C become-educated 10. Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) = \frac{x}{2}, x \in \left[0, \frac{\pi}{4}\right].$ 11. If $A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 2 & 1 \\ 4 & 3 & -1 \end{bmatrix}$, then show that |2A| = 8|A|.
 12. If $y = \left[\log\left[x + \sqrt{x^2 + 1}\right]\right]^2$ then show that $(1 + x^2)y_2 + xy_1 = 2$ or
- If $\sin y = x \sin(a + y)$, prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$.
- **13.** Evaluate $\int \frac{x^2 + x + 1}{(x+2)(x^2+1)} dx$
- **14.**Solve $(1 + y^2) + (x e^{\tan^{-1}y}) \frac{dy}{dx} = 0$
- **15.** Maximize Z = 300x + 200y: $x + y \le 24, 2x + y \le 32, x, y \ge 0$
- **16.** A problem is given to three students, whose chance of solving it are $\frac{1}{4}$, $\frac{1}{3}$ and $\frac{1}{2}$ respectively. Find the probability that (i) exactly one will solve (ii) problem is solved. OR There are two bags, First bag contains 4 wite and 3 red balls, 2nd bag contains 6 white and 5 red balls. One ball is drawn at random from one of the bags and found to be red. Find the probability that it is drawn from 2nd bag.

Section D

- **17.**Solve: x + y + z = 6, 2x y + z = 3, x 2y + 3z = 6.
- 18. Show that semi-vertical angle of the right circular cone of the given slant height and maximum volume is $tan^{-1}\sqrt{2}$. **or** An open box with square base is to be made out of a given iron sheet of area 36 m². Show that the maximum volume of the box is $12\sqrt{3}$ m³.
- **19.** Find shortest distance between lines $\vec{r} = \hat{\imath} + \hat{\jmath} + \lambda(2\hat{\imath} \hat{\jmath} + \hat{k})$ and $\vec{r} = 2\hat{\imath} + \hat{\jmath} \hat{k} + \mu(3\hat{\imath} 5\hat{\jmath} + \hat{k})$ Express $\vec{a} = 5\hat{i} - 2\hat{j} + 5\hat{k}$ as sum of two vectors such that one is parallel to the vector $\vec{b} = 3\hat{\imath} + \hat{k}$ and other is perpendicular to \vec{b} .